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Abstract

This version of ’Princess and Monster’ games at which the Monster seeks out for a

Princess in a dark room, takes place on the interval [−1, 1]. It seems that this version

had not been studied for a long time because it appears to be trivial. On the contrary

it is difficult enough so that no one has been able to solve it so far. This work gives

a short introduction into the world of ’Princess and Monster’ games and presents the

results of [1] by showing properties for optimal strategies of both players, as well as

estimates on the value of the game. Finally it updates numerical findings of [2] which

provides considerations on how to approximate a possible solution of the game.

Zusammenfassung

Diese Version der ’Prinzessin und Monster’ Spiele, bei denen das Monster nach einer

Prinzessin in einem dunklen Raum sucht, findet auf dem Intervall [−1, 1] statt. Es

erweckt den Anschein, als wäre diese Version lange Zeit nicht studiert worden, weil sie

trivial wirkt. Sie ist im Gegenteil schwierig genug, so dass bisher niemand im Stande

war, sie zu lösen. Diese Arbeit gibt eine kurze Einführung in die Welt der ’Prinzessin

und Monster’ Spiele und stellt die Ergebnisse von [1] vor, in dem Eigenschaften von opti-

malen Strategien beider Spieler so wie Abschätzungen des Wertes des Spiels hergeleitet

werden. Zuletzt werden numerische Erkenntnisse aus [2], das Überlegungen für die

Approximation einer möglichen Lösung des Spiels bereitstellt, auf den neuesten Stand

gebracht.
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1 Introduction

1.1 Search games with mobile Hider on general spaces

A specific version of a search game is a search game whose so called Hider is mobile.

In his book [3] Rufus Isaacs introduced such games under the name “Princess and

Monster Games”. Here the Monster (Searcher) seeks out for the Princess (Hider) in a

totally dark room, respectively any metric space Q with metric dQ where nothing can

be spotted apart from its boundary. This means that at no time the Monster can see

the Princess and vice versa except for the time T when they meet. Let S = S(t) and

H = H(t) be continuous paths on Q that describe the movement of both players at

which the speed of the Monster is at most 1. Apart from that the Monster and the

Princess can choose any starting point S(0), respectively H(0). Then the capture time,

cost function or payoff T for S and H is

T = C(S, H) = min {t : S(t) = H(t)} (1)

which has been shown to be reasonable even for not compact spaces in [6]. As the

Monster wants to minimize T and the Princess wants to maximize it, the game is called

zero-sum. Therefore T also “represent(s) the gain of the Hider” and “the loss (effort

spent in searching) of the Searcher” [4].

To keep up the terminology of game theory, it is important to differentiate between

available strategies of the Monster and the Princess. So the trajectories S and H are

called pure strategies and their corresponding spaces are identified as follows: The

pure strategy space H of the Hider consists of all continuous paths H : [0, ∞] 7→ Q.

Because of the limited speed of the Searcher, his pure strategy space S consists of all

paths in H with Lipschitz constant 1, that is S = {S : [0, ∞) 7→ Q :dQ(S(t), S(t′)) ≤

| t−t′|, ∀ t, t′ ≥ 0}. Due to the fact that noone knows the chosen strategy of the opponent

or just to assure oneself against the worst case, it is reasonable to choose the value of

a strategy as the worst possible payoff for that strategy, that is V (S) = sup
H∈ H

C(S, H)

∀ S ∈ S and V (H) = inf
S∈ S

C(S, H) ∀ H ∈ H. The pure value is the value of the game

achieved only via pure strategies and is V = inf
S∈ S

V (S) = sup
H∈ H

V (H). Sometimes there

is only a value that is abitrary close to the pure value. But if the pure value exists,

then there is for any ε > 0 a such called ε-optimal pure strategy whose value is worse

only about ε. Or more exactly, if Sε is an ε-optimal pure searcher strategy and Hε an

ε-optimal pure hider strategy, then V (Sε) < (1 + ε)V and V (Hε) > (1 − ε)V holds.

Thus V is the best guaranteed payoff for both players when they use both one fixed

trajectory. But in general it doesn’t suffice to use only pure strategies, because mostly
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there is no pure strategy that dominates all other pure strategies. So the Monster

and the Princess have to make probabilistic choices among pure strategies which are

called mixed strategies. Mathematically spoken, a mixed strategy for a player with

pure strategy space X is the probability distribution over X . Of course, any pure

strategy can be regarded as mixed strategy which concentrates only on that specific

pure strategy. But as those mixed strategies are usually highly randomized, this is one

reason why search games aren’t easy to solve. “Our feeling is that just how the players

use chance to pick their paths is secondary; probably any haphazard meandering will

do about as well as any other” [3]. Focusing therefore only on mixed strategies from

now on, the capture time can’t be a fixed cost anymore, but an expected cost. Let s

be either a mass function or a density function of a mixed searcher strategy and h be

either a mass function or a density function of a mixed hider strategy depending on S

and H in each case being finite or not. For short, we call s and h mixed strategies, too.

Let moreover x(S, H) = s(S) ·h(H) ∀S ∈ S, ∀H ∈ H. Then the expected capture time

T ∗ reads depending on S × H being finite or not as:

T ∗ = c(s, h) =
∑

(S, H)∈ S×H

x(S, H) · C(S, H) (2)

or

T ∗ = c(s, h) =

ˆ

S×H

x(S, H) · C(S, H)d(S, H) (3)

Anyway, the values of the mixed strategies and the value of the game can be easily trans-

ferred from the values declared in conjunction with pure strategies. v(s) = sup
h

c(s, h)

and v(h) = inf
s

c(s, h) denote the value of a mixed searcher strategy s, respectively of a

mixed hider strategy h. Hence v(s) ≥ c(s, h) ≥ v(h) for any s and for any h. If equality

holds, the corresponding mixed strategies s and h are called optimal strategies while

the coinciding values of both strategies form the value of the game v.

v = inf
s

v(s) = sup
h

v(h) (4)

In this case, there also exist for any ε so called ε-optimal strategies sε for the Searcher

and hε for the Hider, which satisfy

v(sε) ≤ (1 + ε)v (5)

and

v(hε) ≥ (1 − ε)v (6)
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After clarifying the basic terms of search games with mobile Hider on general, metric

spaces, this work introduces its mainpart, the Monster and the Princess on an Interval,

whose present results are carried out after [1] and [2] in the following.

1.2 The game on an interval

According to [1] the minimax theorem of Alpern and Gal [6] can be used to prove the

existence of v for any Q. Moreover it shows that there is also an optimal mixed searcher

strategy as well as an ε-optimal mixed hider strategy. Nevertheless these Princess and

Monster Games are so difficult that none but one have been solved meaning that the

value of these game is still unknown, let alone the strategies of both players. Of the

easiest spaces Q, speaking of the circle and the interval, only one has been solved yet:

the circle. The other one appeared to be trivial and had not even been studied for a

long time. It seemed that on the interval I = [−1, 1] the Monster simply starts with

probability 1
2

at one of both ends (−1 or 1) and straightly grazes the whole interval for

the Princess with maximal speed 1 until it reaches the other end. Against this, the best

what the Princess could do is an ε-optimal strategy: She waits e.g. at 0 until time 1−ε,

then goes equiprobably to either end. As this strategy works for any ε > 0 which can be

arbitrary close to 0, it is ignored when calculating payoffs now and in the rest of this work

when using ε-optimal strategies. From there the two possible capture times are 1 and 2.

This gives the following expected capture time T ∗ = 1
2
(1

2
(1 + 2)) + 1

2
(1

2
(2 + 1)) = 3

2
. As

said, optimal mixed strategies are rather highly randomized. The Monster can maybe

expect a such intelligent move of the Princess and expand his strategy by adding a

strategy that counters her loitering in the middle of the interval from time to time.

Later it will be shown that for this reason the value of the game is by all means not 3
2
,

but smaller and therefore not trivial. Transforming a handful of pure strategies into a

matrix game and solving it as linear program after [7] will also give a lower bound for

v. By including a bit more complex strategies with continuous initial distribution for

both players, the sharper estimate 1 < 15
11

< v < 13
9

< 3
2

achieved in [1], will precisely

be recomputed. At last this work offers a numerical approach like in [2] that calculates

an approximated value of a restricted version of the game via strategies used to get the

above-mentioned estimate. The so found value of this special game is ≈ 1.3727, but

together with the associated optimal strategies of both players, the results of this work

differ from those in [2]. However, it is at first necessary to talk about the properties of

the optimal, respectively ε-optimal strategies of the Monster and the Princess to restrict

the strategies to be regarded. Here [1] serves again as standard. Then it is possible to

construct and to comprehend strategies that help to contribute to the solution of the

game.
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2 Properties of the game

In this chapter it will be shown that every optimal searcher strategy as well as every

(ε-)optimal hider strategy must have got particular properties on the one hand. But

on the other hand there also exists of eventually more possible (ε-)optimal strategies

always at least one strategy with other certain characteristics. By trying to construct

optimal strategies by oneself – and that is the only thing these properties are important

for the rest of this work –, it suffices to consider last named strategies for which all of

the following rules apply: First of all, it is clear without proof that searcher paths have

to cover the entire interval or hiding at some end for example gives a payoff that is

infinite. Furthermore it is obvious that the Monster and the Princess equiprobably use

pure strategies and their symmetric counterparts such that the mixed strategies of both

players are invariant under the reflection φ(x) = −x. Such mixed strategies are called

symmetric. A pure strategy that is symmetric to S ∈ S, respectively H ∈ H, is denoted

as −S, respectively −H . Then it will be proofed that a Searcher reaching an end of the

interval should go directly to the other end. In contrast, a Hider that reaches an end,

should stay there until the end of the game. Besides, the Hider should never move faster

than the maximal velocity of the Searcher which is 1. Without losing the ε-optimality of

a mixed hider strategy, it is possible to consider that it only consists of a finite number

of pure strategies. Then it will be shown that it is sufficient for the Searcher to also

use only a finite number of pure strategies which can exactly be determined when the

hider strategy is known once. This fact will later be very important for finding lower

bounds on the value of the game. It will also justify that the Searcher has to utilize

his maximal speed 1 the whole time. At last there exists an ε-optimal hider mixed

strategy in which the pure strategies do not interesect. A consequence of this will be

that a Hider will only loiter around either in the positive part of the interval [0, 1] or

in its negative part [−1, 0]. But at first here are a few definitions that make it easier

to handle the proofs of above-named properties mathematically.

Definition 1. Let X be a closed pure strategy space consisting of continuous pure

strategies of a player. Such a player with pure strategy X ∈ X runs or is called

running at time t if he or she moves with velocity 1 at time t. If it is clear at which

time interval the player runs, the player just runs or is just called running.

Remark 2. As there exists a pure strategy space consisting of smooth (continuously

differentiable) paths and that is dense in X , it is legitimate to allow for smooth paths

only without changing the value of the game. This implies |X ′(t)| = 1 for a player with

strategy X that is running at time t.

Definition 3. A pure strategy S ∈ S is called end-reflecting if the player using this
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strategy turns after reaching an end and runs to the other end. This implies ∀ t0 ∈ [0, ∞)

that |S(t0)| = 1 ⇒ |S(t) − S(t0)| = t − t0 ∀ t with t0 ≤ t ≤ t0 + 2.

Definition 4. A pure strategy H ∈ H is called end-absorbing if the player using

this strategy remains on the spot after reaching an end. This implies ∀ t0 ∈ [0, ∞) that

|H(t0)| = 1 ⇒ H(t) = H(t0) ∀ t ≥ t0.

Of the following lemmas the first three affect the nature of the paths picked by the

players, the rest concern mixed strategies as a whole.

Proposition 5. Every pure searcher strategy S ∈ S is dominated by one which is

end-reflecting.

Proof. It is perspicuous that if the Monster has reached the end and has not found the

Princess yet, he will find the Princess independent of any strategy she uses, as quickly

as possible by running straight to the other end. To give a proper proof, suppose S is

not end-reflecting and let it reach +1 at first time t0. Define S∗ as S up to time t0, but

then let it be end-reflecting, thus S∗ = 1−(t−t0) ∀t with t0 ≤ t ≤ t0 +2. Let H ∈ H be

arbitrary. If C(S, H) ≤ t0, then C(S∗, H) = C(S, H). If for some t1 > t0 C(S, H) = t1

holds, then the definition of T immediately gives S(t1) − H(t1) = 0, and since the

player with strategy S∗ is running, it yields S(t) ≥ S∗(t) ∀t ≥ t0. Therefore we have

S∗(t1) − H(t1) ≤ 0. On the other hand by considering H(t) ≤ 1 ∀ t ∈ [0, ∞), we obtain

S∗(t0)−H(t0) = 1−H(t0) ≥ 0. As S∗−H being a continuous function, the Intermediate

Value Theorem applies such that the Monster using S∗ finds the Princess between t0

and t1. Thus in all cases S∗ satisfies C(S∗, H) ≤ C(S, H) and so S∗ dominates S.

Proposition 6. Every pure hider strategy H ∈ H is dominated by one which is end-

absorbing.

Proof. Again our intuition tells us that this is true because once the Princess has reached

an end, it is better to stay there or she will only meet the Monster halfway. A proper

proof of this fact is achieved like the proof above: Let H be not end-absorbing and let it

reach +1 at first time t0. Define H∗ agreeing with H up to time t0, but as end-absorbing

strategy and the Hider using it stays at +1. Consider any S ∈ S. Similarly to above

we may also consider C(S, H∗) = t1 > t0 due to the fact that if C(S, H) ≤ t0, then

C(S, H∗) = C(S, H). All in all this yields S(t1) = 1 ≥ H(t1) and S(t0) < 1 = H(t0)

for a continuous S. By the Intermediate Value Theorem it follows that the Searcher

finds the Hider between t0 and t1 and therefore C(S, H∗) ≥ C(S, H) holds. As S was

arbitrary, H∗ dominates H .
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Proposition 7. Every smooth pure hider strategy H in H is dominated by one which

is in S = {S : [0, ∞) 7→ I = [−1, 1] : |S(t) − S(t′)| ≤ | t − t′|, ∀ t, t′ ≥ 0}. That means

that no Hider should move with greater velocity than 1.

Proof. We construct a pure strategy H∗ for a Princess who follows a Princess using H ,

but only moves with a velocity which is at most 1. The idea behind this is that on the

one hand a Princess using H∗ can’t be caught by a Monster from behind and on the other

hand she will not crash into the Monster before the Princess using H . So it is sufficient

to proof the last named fact which goes by a handful of following, valid assumptions:

Let t0 be the first time that the Princess with H is moving faster than speed 1. As H

is smooth and not in S, the definition t0 = inf {t ∈ [0, ∞) : |H ′(t)| > 1} < ∞ as well

as its finiteness is justified. Define H∗(t) = H(t) ∀ t ≤ t0 and ∀ t with τ ≥ t > t0 the

Princess using H∗ continues to move with speed 1 in the same direction as the Princess

using H until they meet again at time τ because of the boundedness of the interval.

Suppose that hiders with strategy H and H∗ are in different locations when the Hider

with strategy H is found at time C(S, H) by the Searcher using any strategy S ∈ S or

C(S, H∗) = C(S, H) holds. Furthermore suppose that the capture also occurs before

time τ or else let t1 = inf {t ∈ [τ, ∞) : |H ′(t)| > 1} and repeat the construction induc-

tively. This yields t0 < C(S, H) < τ . As there always exist symmetric pure strategies in

every ε-optimal mixed hider strategy, let H be the one of both symmetric variants that

moves right at time t0 such that H∗(t) < H(t) ∀ t ∈ (t0, τ) holds. Since C(S, H) ∈ (t0, τ)

we also have H∗(C(S, H)) < H(C(S, H)) = S(C(S, H)). Moreover the Searcher using

S moves with bounded speed and therefore it yields H∗(t) < S(t) ∀ t ∈ (t0, C(S, H))

resulting into C(S, H∗) > C(S, H) when putting all cases together.

The following lemmas now concern mixed strategies, probability measures on the

Borel σ-algebra of S, respectively any subset that is dense in S.

Proposition 8. For any ε > 0 there exists an ε-optimal hider mixed strategy that

consists of a finite number of pure strategies.

Proof. Discretize the interval into a large, but finite number of grid points and consider

polygonal paths on this grid that approximate the pure strategies of the Princess.

Then the set of all those polygonal paths – let’s call it P – is also finite and as the

grid points of the discretization can be arbitrary close to each other, P is dense in

the pure strategy space S of the Princess. Let S, H ∈ S be arbitrary and P ∈ P

denotes the approximation of H . While a Princess using P is limited to a grid, it yields

C(S, P ) ≤ C(S, H) for a unlimited Monster using S. Since C(S, H) is lower semi-

continuous as a function on S and H , it follows C(S, P ) ↑ C(S, H) for an increasing

number of grid points. Thus, replacing H by P in the definition of the value of the

game (2), respectively (3), shows that the ε-optimality is preserved.
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Proposition 9. Suppose the Hider restricts his mixed strategy on a finite set of pure

strategies. Then the optimal response by the Searcher is to concentrate on only a finite

set of pure strategies as well. In particular, he should run to one possible Hider after

another until all possible Hiders using different pure strategies have been caught. This

means for such a pure searcher strategy S and for pure hider strategies Hj with number-

ing j ∈ 1, . . . , J such that the capture times are C(S, Hj) = tj with 0 = t1 ≤ t2 ≤ · · · ≤ tJ :

S ′(t) = sign (Hj+1(tj) − S(tj)) ∀ t ∈ (tj, tj+1), j ∈ 1, . . . , J − 1 (7)

Proof. Let S∗ be any pure searcher strategy which is an optimal response to the hider

mixed strategy consisting of Hj , j ∈ 1, . . . , J so that C(S∗, Hj) = t∗
j nondecreasing

in j. Moreover suppose it fails (7) for some j. Let k be the smallest such j for

it. Again as there exist symmetric pure strategies, let S∗ be the trajectory with

S∗(t∗
k) < Hk+1(t∗

k) without loss of generality. Define also a new pure searcher strat-

egy S with C(S, Hj) = tj ∀ j ∈ 1, . . . , J . The Searcher using it first follows the Searcher

with S∗ until time t∗
k when he continues to use (7) by running right. Therefore he will

be the first one meeting Hj and since Hj ∈ S, he can follow up the Hider using Hj until

this Hider is found by the Searcher with S∗ at time t∗
k+1. After that the Searcher with

strategy S can agree with S∗ once more until the next time when S∗ fails (7) again.

This yields the function

S(t) =







S∗(t), for t ≤ t∗
k

S∗(tk) + (t − tk), for t∗
k ≤ t ≤ tk+1

Hj+1(t), for tk+1 ≤ t ≤ t∗
k+1

S∗(t), for t∗
k+1 ≤ t

Thus it is clear that tj = t∗
j ∀ j ∈ [J ] r {k + 1} and tk+1 < t∗

k+1 holds. Hence S∗ is not

an optimal response to the mixed hider strategy.

Corollary 10. If a Searcher is using an optimal strategy, then he runs all the time.

Definition 11. A pair of pure hider strategies H1, H2 is called non-crossing if

H1(t) ≤ H2(t) ∀ t ≥ 0 holds. If the inequality holds strictly, H1 and H2 are called

non-intersecting.

Proposition 12. Let a mixed hider strategy h consist of two equal used pure hider

strategies H1 and H2. Define new pure hider strategies H1 ∧ H2 = min
t≥0

{H1(t), H2(t)}

and H1 ∨ H2 = max
t≥0

{H1(t), H2(t)}. Then h is dominated by a strategy that mixes

H1 ∧ H2 and H1 ∨ H2 with equal probability. Consequently, any finite mixed hider

strategy may be assumed to consist of non-crossing pure strategies.
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Proof. According to its definition, H1 ∧ H2 and H1 ∨ H2 form a set that coincides

with {H1(t), H2(t)} for all t. Let a Searcher using a pure strategy S catch the first

of the two Hiders with the original strategies H1 and H2 – let it be H1 without loss

of generality – at time t1. Therefore he also catches the first of the two hiders using

H1 ∧ H2 and H1 ∨ H2 at time t1. As regarding symmetric strategies, let the Searcher

with S approach from the left side and thus, catch H1 ∧ H2 at time t1. Consequently

we obtain S(t1) = H1 ∧ H2(t) = H1(t1) ≤ H2(t1) = H1 ∨ H2(t1). Together with

H2(t) ≤ H1 ∨ H2(t) ∀ t ≥ 0, it yields C(S, H2) ≤ C(S, H1 ∨ H2) and so H1 ∨ H2

dominates H2 while H1 ∧ H2 and H1 are at least equally good. Since H1 ∧ H2 and

H1 ∨ H2 are obviously non-crossing, we can therefore construct a finite mixed hider

strategy out of several non-crossing pure strategies.

Remark 13. As a finite collection of non-crossing paths can be approximated arbitrary

closely by a collection of non-intersecting paths, any finite mixed hider strategy may

be assumed to consist of non-intersecting pure strategies.

To recapitulate, in the following part of this work only mixed strategies have to be

considered that are finite, symmetric and additionally non-intersecting, if it is about

mixed hider strategies. Before proceeding with showing the non-triviality of the game

in the next section, there is just only one more short corollary left that instantaneously

follows for mixed hider strategies being non-intersecting and symmetric at the same

time.

Proposition 14. Any pure hider strategy H in a non-intersecting, symmetric mixed

hider strategy is contained in either one half of the interval which means H(t) ∈ [−1, 0]

or H(t) ∈ [0, 1] for all t ≥ 0.

Proof. As H is used by the Princess, so is its symmetric part −H . H(t) = 0 for any

t would imply an intersection of H and −H , unless H is immobile and stays at 0 for

the rest of the game. But when H(t) 6= 0 ∀t ≥ 0, neither H nor −H can traverse the

middle of the interval. In both cases, the claim holds.

3 Analytic study of the game on the interval

3.1 The non-triviality of the game

When looking at the ’Princess and Monster’ game on an interval, there are several

strategies for both players that appear to be obviously optimal. If they were, the

game would be considered to be trivial as one may when hearing the first time of this

problem. One component of such ’obviously optimal’ strategies has already been in-

vestigated in this work, that is the so called sweeper strategy, let it denote with A.
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In this pure strategy the Monster, respectively ’the sweeper’, starts at 1 and runs to

−1, such that A(t) = 1 − t ∀ t ∈ [0, 2] or symmetrically −A(t) = −1 + t ∀ t ∈ [0, 2]

yields. Apparently it also possesses the property gained in Proposition 5. An ε-optimal

response of the Princess is to loiter in the middle of the interval until time 1 − ε and

then go to +1, respectively −1 and is denoted by F , respectively −F . Describing both

strategies as trajectories that satisfy the relevant properties corresponding to Propo-

sition 6, 7 and 14, this gives F (t) =







max
t≥0

{0, −1 + ε + t}, for 0 ≤ t ≤ 2 − ε

1, for t > 2 − ε
, re-

spectively −F (t) =







min
t≥0

{0, +1 − ε − t}, for 0 ≤ t ≤ 2 − ε

−1, for t > 2 − ε
. Mixing F and −F with

equal probability then yields as shown the expected payoff 3
2
. The reason why this

response is optimal and why therefore we can put v ≤ 3
2
, is that a Monster mixing A

and −A will equiprobably find any Princess either in the first half of the interval or her

symmetric counterpart in the second half such that in the worst case one capture time

is 1 and the other one is 2. Another strategy seeming to be part of an optimal strategy

and also fulfilling all corresponding properties of pure hider strategies, is the strategy

E whose user hides at +1 for the rest of the game. So for all t ≥ 0 we obtain E(t) = 1,

respectively −E(t) = −1. The strategy which mixes E and −E with equal probability,

is optimally countered according to Proposition 9 by the mixed strategy consisting of

the equiprobable usage of the sweeper strategies A and −A. As every pure strategy

is used with equal probability here, it suffices to concentrate on one of two symmetric

pure strategies for one player when computing the expected payoff T ∗. This means

T ∗ = 1
2
C(S, E) + 1

2
C(−S, E) = 1

2
C(S, E) + 1

2
C(S, −E) = 1

2
(0 + 2) = 1. Altogether we

obtain 1 ≤ v ≤ 3
2
. To show the non-triviality of the game, it is already enough to proof

1 < v < 3
2
. Therefore this work starts with rather easy strategies for both players to

get the estimate 1 < 97
95

< v < 47
32

< 3
2
. Then some strategies exerting themselves for a

sharper estimate with continuous initial distributions, are presented.

3.1.1 A simple searcher strategy

To build a better searcher strategy such that T ∗ < 3
2
, let’s have a look at A and −A

versus F and −F once more. As revealed in the introduction of this work, the Monster

can improve his strategy by adding new pure strategies. Now that we have the helpful

proposition 9, it is known what at least a pair of missing strategies should fulfill and

that is to start at 0. Let therefore be B and −B be such a pair that punishs loitering

hiders in the middle of the interval. More specifically, a Monster using B starts at 0,

runs to the left until it meets the sweeper using −A at time 1
2

and then joins him, but
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Figure 1: The searcher strategy for V < 47
32

in a space-time diagram (adopted from [1])

after reaching 1 the Monster has to run back to −1 by Proposition 5. The symmetric

strategy −B does the same, but there the Monster runs first right and then joins the

sweeper with A. The mixed strategy of the Monster now goes in the following way: It

uses strategies ±A each with probability 7
16

and ±B each with probability 1
16

. Those

strategies are drawn in a space-time diagram [−1, 1] × [0, ∞), Fig. 1 (see also [1]).

Search paths are depicted here as lines of slope ±1 with A and −A being the thicker

lines. This new mixed searcher strategy brings a slight improvement as shown below.

Lemma 15. If the Monster uses the mixed strategy described above, then the expected

payoff 47
32

is guaranteed against any strategy of the Princess. Therefore v ≤ 47
32

= 1.46875

holds.

Proof. Let H be any pure hider strategy and let P (t) be the probability that the hider

has been caught since time t by any Monster using one of its pure searcher strategies.

Then we consider two cases: (i) |H(1
2
)| ≤ 1

2
, and (ii) |H(1

2
)| > 1

2
.

(i) In this case we may once again assume because of symmetry that 0 ≤ H(1
2
) ≤ 1

2
.

So therefore the Princess using H has been caught by the Monster with −B at the

latest at time 1
2

such that P (1
2
) = 1

16
. Then the Princess can maximally avoid the

rest of the possible opponents until time 1. She chooses to meet the slight less likely

appearing Monster using A in the middle first, then ε-optimally escapes Monsters with

−A and −B by running to 1 until time 2. Thus, it yields P (1) = 8
16

, P (2) = 1 and

T ∗ ≤ 1
16

· 1
2

+ 7
16

· 1 + 8
16

· 2 = 47
32

.

(ii) The same trick as in (i) let us assume H(1
2
) > 1

2
without loss of generality.

Hence the Princess using H has met the Monster with A until time 1
2

while ε-optimally
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escaping the Monster with −B such that P (1
2
) = 7

16
yields. Then she can maximally

avoid Monsters with B and −A that joined themselves until time 2 and the Monster

with −B until time 4 by hiding at the end 1. Consequently, we have P (2) = 15
16

,

P (4) = 1 and therefore T ∗ = 7
16

· 1
2

+ 8
16

· 2 + 1
16

· 4 = 47
32

.

We proceed with a lower bound for v. In exchange it is preliminarily important to

know about the relationship of matrix games and search games and how to solve such

matrix games.

3.1.2 Matrix games

In general a matrix game is a game in which two rivals play against each other by

picking either a column or a row of a m × n matrix G = (gi,j)i=1,...,m,j=1,...,n. The first

player secretly chooses a column j ∈ [n] whereas the second player secretly chooses

a row i ∈ [m]. Both players get the payoff gi,j at which the aim of player one is

to maximize his expected payoff and the aim of player two is to minimize it for any

length of time, respectively any number of repetition of the game. This is achieved

for both players by using mixed strategies. In particular, if you exchange player one

with the Princess and player two with the Monster, you get a restricted version of the

Monster and the Princess game in which exactly m pure strategies are available for the

Monster and exactly n pure strategies are available for the Princess. This means row i

stands for the i-th pure strategy Hj of the Princess, column j stands for the j-th pure

strategy Sj of the Monster and gi,j is gi,j = C(Sj, Hj). The tricky thing is that a matrix

game only works with a finite number of pure strategies, but after Proposition 8 and

9, it suffices to concentrate on finite mixed strategies for the Princess as well for the

Monster. So theoretically if we had a finite, ε-optimal mixed strategy for the Princess,

we could construct an optimal response of the Monster with the help of Proposition 9

and therefore the solution of the matrix game that inherits all those pure strategies,

would give the value of the game. At least we can construct for any hider strategy an

optimal response of the Monster and a solution of this matrix game would then give the

value of the corresponding hider strategy which is by definition a lower bound for the

value of the game. But the question that remains is, how to solve such a matrix game?

Now having the problem in form of a matrix G, the answer is to embed G into a linear

problem (LP for short) which can be solved by several algorithms like the Simplex

algorithm. The Princess for example wants a mixed strategy h in form of a vector

p = (h(H1), . . . , h(H1))T with a guaranteed and maximized payoff z. As h resembles

a mass function, it has to satisfy h(Hj) ≥ 0 ∀ j ∈ [n] and
n∑

j=1
h(Hj) = 1. Because z is

guaranteed, the strategy h should ensure that its payoff is at least as good as z for all

strategies of the Monster. This yields
n∑

i=1
xi ·gij ≥ z ∀ j ∈ [n]. Let 1n = (1, . . . , 1)T ∈ Rn

16



and 0n = (0, . . . , 0)T ∈ Rn. Maximizing z while transforming these conditions into

several matrix multiplications, gives the following LP:

z∗ := max
(pT , z)T ∈Rn+1

z

such that −Gp + z · 1m ≤ 0m

1T
n p = 1

p ≥ 0n

⇐⇒

max
(pT , z)T ∈Rn+1




0n

1





T 


p

z





such that
(

−G 1m

)




p

z



 ≤ 0m

(

1T
n 0

)




p

z



 = 1

p ≥ 0n

(8)

Consider now the dual problem with q ∈ R
m, w1 ∈ R, w2 ∈ R, s ∈ R

n and In being

the n × n unit matrix:

min
(qT , sT , w1, w2)T ∈Rm+n+2











0m

0n

1

−1











T 









q

s

w1

w2











such that











−G 1m

−In 0n

1T
n 0

−1T
n 0











T 









q

s

w1

w2











=




0n

1





q ≥ 0m

s ≥ 0n

w1, w2 ≥ 0

⇐⇒

min
(qT , sT , w1, w2)T ∈Rm+n+2

w1 − w2

s. t. −GT q − s + w1 · 1n − w2 · 1n = 0n

1T
mq = 1

q ≥ 0m

s ≥ 0n

w1, w2 ≥ 0

w=w1−w2⇐⇒
s≥0

min
(qT , w)T ∈Rm+1

w =: w∗

s.t. −GT q + w · 1n ≥ 0n

1T
mq = 1

q ≥ 0m

(9)

As understanding q as a vector containing a mixed strategy of the Monster and w

as a payoff that should be an upper bound for every possible payoff the Monster can

achieve and that should be minimal, the dual problem (9) exactly provides what the

Monster wants to do. Now able to solve the value of the matrix game z∗ = w∗and its

corresponding optimal mixed strategies, the next section shows how to compute a lower
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bound for v like described above.

3.1.3 A simple hider strategy

Let the strategies A, B, E and F be as before. Once more the already existing pure

strategies will be enriched, this time starting with the strategies of the Princess. At this

she may for example consider the ε-optimal strategies that let her start at ±1
2

which

lies in between the starting points of ±A and ±B and then remain there until 1
2

− ε.

After ensuring a payoff of at least 1
2
, she can still delay the capture by either a Monster

using ±A or a Monster using ±B by either running to the middle and back until the

end or by running directly to the nearest end. Denote those strategies X and Y in

same order. Together with their symmetric counterparts they are drawn in thick lines

in Fig. 2 on the left side (see also [1]). Note that X and Y do not cross the centre like

all paths of ε-optimal mixed hider strategies that fulfill the property of Proposition 14.

If the Princess now mixes {±E, ±F, ±, X, ±Y }, the Monster has to start in 0, ±1
2

or

±1 and then run between all possible hider paths according to Proposition 9. When

starting at an end, there is only one reasonable option for the Monster and that is to

use the sweeper strategy ±A. If it starts in 0, then it uses either ±B or to catch a

nearer Princess using either ±E or ±Y , it can in contrast run to an end and then to

the other one. Denote this strategy with M . The last two possible pairs of strategies

of the Monster are obtained when it starts in ±1
2
. Before turning in opposite direction,

it runs to the nearest end first, ’strategy ±C’ or to the remote end, ’strategy ±D’.

Strictly speaking, you have to consider two more pairs of strategies starting in ±1
2
. One

that brings the Monster to the centre and back and one that brings the Monster to

±1
4

to additionally catch a Hider with ±X before turning. By computing the capture

times, it is clear that both strategies are dominated by ±D, though. Otherwise, note

that there aren’t more pure searcher strategies. That is because the Searcher mostly

catches multiple possible Hiders, above all by running to an end. These strategies of

the Monster can also be found in Fig. 2, this time on the right hand side.

Lemma 16. If the Princess and the Monster mix all their above named strategies, then

the solution of the corresponding matrix game yields the lower bound v ≥ 97
75

= 1.2933.

Proof. A game matrix G equipped with the expected capture time of {Si, −Si} versus

{Hj, −Hj} for the i-th pure searcher strategy ±Si and the j-th pure hider strategy ±Hj

for all rows i and all columns j, is in this case with ignoring ε:
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Figure 2: Left: {±E, ±F, ±, X, ±Y } is depicted thick against {±A, ±B}; Right: C, D

and M are added due to lucidity without their symmetric parts. (adopted from [1])

G =

±E ±F ±X ±Y

±A

±B

±C

±D

±M














1
2
(0 + 2) 1

2
(1 + 2) 1

2
(1 + 2) 1

2
(1

2
+ 2)

1
2
(2 + 4) 1

2
(0 + 0) 1

2
(1

2
+ 2) 1

2
(2 + 4)

1
2
(1

2
+ 5

2
) 1

2
(5

4
+ 5

2
) 1

2
(0 + 5

2
) 1

2
(0 + 5

2
)

1
2
(3

2
+ 7

2
) 1

2
(1

2
+ 1

2
) 1

2
(0 + 3

4
) 1

2
(0 + 3

2
)

1
2
(1 + 3) 1

2
(0 + 0) 1

2
(1

2
+ 3) 1

2
(1 + 3)














=

±E ±F ±X ±Y

±A

±B

±C

±D

±M














1 3
2

3
2

5
4

3 0 5
4

3
3
2

15
8

5
4

5
4

5
2

1
2

3
8

3
4

2 0 7
4

2














.

Solving G as explained in the last section, gives the value of the matrix 97
75

.

Remark 17. Let p∗ denote the optimal mixed hider strategy in vector form and q∗ denote

the ε-optimal mixed searcher strategy in vector form of the matrix game of Lemma 16.

Then p∗ = (0.4133, 0.32, 0.2667, 0)T and q∗ = (0.8, 0, 0, 0.1867, 0.0133)T which means

that the Princess doesn’t use strategy ±Y at all because of the frequent use of the

sweeper strategy and the Monster only uses ±A, ±D and rarely ±M .

To get more accurate bounds on v it would theoretically be possible to proceed

as before and consistently add (ε-)optimal responses to both players. Unfortunately

according to [1] the increase of the number of the rather inefficient computable pure

strategies is exponential and the convergence to the value of the game appears to be very

slow. But there is another approach that might do better and suggests itself the most

from now on. The Monster and the Princess both can use specific pure strategies that

let them actually do the same thing, but let them always start at a different location.

In particular, let them give strategies with continuous initial distributions. With their

help it is possible to set further limits on the value of the game and obtain 15
11

< v < 13
9

.

19



3.2 A searcher strategy with continuous initial distribution

Define a new mixed searcher strategy sΦ whose user starts in a point x on the interval

according to a continuous distribution function Φ(x). Then like in strategy −B he runs

right until meeting the sweeper A which will be joined. Of course, by reaching −1 he

has to turn once more and run to 1. Therefore the symmetric strategy −sΦ let the

Monster start in x with probability Φ(−x) , just to let it run left until meeting −A,

etc. In the rest of this section let y = y(H) ≤ 1 be the first time a Princess using the

pure strategy H meets a sweeper. Then it can be claimed:

Lemma 18. A Searcher using ±sΦ finds a Hider with pure strategy H before time

y if and only if he starts in (1 − 2y, H(0)] and runs to the right, or if he starts in

[H(0), −1 + 2y) and runs to the left.

Proof. First of all the two intervals (1 − 2y, H(0)] and [H(0), −1 + 2y) are legitimate.

According to Proposition 14, it yields either H(t) ≥ 0 ∀ t ≥ 0 (short: H ≥ 0) or H ≤ 0

and therefore either H(y) = 1 − y or H(y) = −1 + y due to the definition of y and of

the sweeper strategy. Because of |H(y) − H(0)| ≤ y (Proposition 7), 1 − 2y ≤ H(0)

and −1 + 2y ≥ H(0) are valid. Let S be now a pure searcher strategy in +sΦ. The

proof for −sΦ is the same. Due to Proposition 14 assume moreover that H ≥ 0. To

show ” ⇒ ” assume that a Searcher with S does not start in the interval (1 − 2y, H(0)],

so either S(0) > H(0) or S(0) ≤ 1 − 2y. In the first case the Searcher runs to the right

and meets the sweeper with strategy A before the Hider such that the capture time

is y and not below. In the second case it is not possible for the Searcher to catch a

Hider with H(y) = 1 − y before time y. ” ⇐ ”: Now assume S(0) ∈ (1 − 2y, H(0)].

As the Searchers with S and A run toward each other, they meet on half way, that is

t0 = 1−S(0)
2

. Since 1 − 2y < S(0) ≤ H(0) it yields t0 < y. Therefore the Searcher meets

the sweeper before the sweeper meets the Hider which means that the Searcher has to

meet the Hider in the mean time.

Let in the following be f = Φ′ the probability density of Φ.

Lemma 19. Searchers with sΦ that start in (1 − 2y, H(0)] catch any Hider using H

with expected capture time

y
ˆ

0

t · f(H(t) − t)(1 − H ′(t))dt (10)

Searchers with −sΦ that start in [H(0), −1+2y) catch any Hider using H with expected
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capture time
y
ˆ

0

t · f(−H(t) − t)(1 + H ′(t))dt (11)

Consequently, the optimal hider path from H(0) to H(y) with a fixed y against both type

of Searchers categorized above, maximizes

y
ˆ

0

Φ(H(t) − t) + Φ(−H(t) − t)dt (12)

Proof. To proof (10) assume the Searcher to behave like stated above. Moreover let

φ(t) be the probability density that describes the relative likelihood of the Hider with

H being catched by the Searcher. Due to Lemma 18 the Searcher needs less time

than y and hence the expected capture time is
´ y

0
t · φ(t)dt. It remains to show

φ(t) = f(H(t) − t)(1 − H ′(t)). Therefore consider a small time interval [t, t + ∆t] in

which the Searcher catches the Hider. At this time sequence the Hider can move from

H(t) to H(t) + ∆H with |∆H| ≤ ∆t arbitrary due to Proposition 7. Because the

Searcher starts to the left of the Hider and straightly runs to him, the Searcher starts

in [H(t) + ∆H − (t + ∆t), H(t) − t]. The probability of the Searcher starting in this

interval is equivalent to the probability of the Hider to get caught in [t, t + ∆t] and can

be approximated by the length of [H(t) + ∆H − (t + ∆t), H(t) − t] multiplicated with

the density f at H(t) − t. This approximation f(H(t) − t) · (∆t − ∆H) in turn is equal

to the approximation via φ(t) over [t, t + ∆t], that is φ(t) · ∆t. By solving this equation

for φ(t) while taking ∆t to 0, we obtain: φ(t) = lim
∆t−→0

1
∆t

· f(H(t) − t) · (∆t − ∆H) =

lim
∆t−→0

f(H(t) − t) · (1 − H(t+∆t)−H(t)
∆t

) = f(H(t) − t)(1 − H ′(t)). (11) is achieved in the

same way.

It remains to show (12). Since the Monster uses sΦ and −sΦ with same probability,

the Princess is caught with the expected capture time established by the arithmetic

average of (10) and (11), that is 1
2

´ y

0
t[f(H(t)−t)(1−H ′(t))+f(−H(t)−t)(1+H ′(t))]dt.

Maximizing this integral is equivalent to maximizing it without the constant 1
2

and

partial integration yields:
´ y

0
t[f(H(t) − t)(1 − H ′(t)) + f(−H(t) − t)(1 + H ′(t))]dt =

y[−Φ(H(y) −y) −Φ(−H(y) −y)]+
´ y

0
Φ(H(t) − t) + Φ(−H(t) − t)dt. The first term can

be further simplified to the value −y(Φ(1 − 2y)) independent of H by |H(y)| = 1 − y.

Though, the last term gives the sought-after integral (12).

Lemma 20. Once a Hider with pure strategy H would meet a sweeper, he should go

to the end when playing against a Searcher that mixes the sweeper strategies with ±sΦ.

21



Then the Searcher using only ±sΦ will catch the Hider ignoring ε with expected time

1−Φ(−H(0))+2Φ(1−2y)+
y

2
(1−Φ(H(0)))−

y

2
Φ(1−2y)+

1

2

y
ˆ

0

Φ(H(t)−t)+Φ(−H(t)−t)dt

(13)

Proof. The first claim is clear, because once a Searcher with ±sΦ meets a sweeper, he

will join him and run away from the end where the Hider optimally hides. To proof

the second claim, consider all different locations for the Searcher to start in as well as

both directions he can choose. Therefore it is not necessary to consider the symmetric

counterpart of strategy H . Thus, assume as we may H ≥ 0. A Searcher that chooses

to use −sΦ with probability 1
2

and then starts out left from H(0) with probability

1 − Φ(−H(0)), runs to the left, joins the sweeper wih −A and finds the Hider in 1

at time 2. Hence, the first term 1
2
(1 − Φ(−H(0))) · 2 = 1 − Φ(−H(0)) is obtained.

The second term is achieved by considering a Searcher that starts left from 1 − 2y and

runs to the right, all in all with probability 1
2
Φ(1 − 2y)·. Due to Lemma 18 he meets

the sweeper with A first and after a reciprocating motion he finally reaches the Hider

at time 4. Then a Searcher that starts right from H(0) and runs to the right with

probability 1
2
(1 − Φ(H(0))), joins the sweeper with A, just to meet the Hider together

at time y. This gives the third term. The last two terms are obtained by Searchers that

behave like in Lemma 19. The expected values are therefore calculated by the same

token as in the proof of that lemma.

To tinker an upper bound for v, the payoff (13) has to become simpler. There-

fore consider (12) which is a variational problem and its Euler-Lagrange equation is

f(H(t) − t) = f(−H(t) − t). If f = 1
2

denoted the density of the uniform distribu-

tion, then this equation would be satisfied for every hider path H . Moreoever (12)

would simplify itself to a term independent of H , that would be with Φ(x) = x+1
2

:
´ y

0
H(t)−t+1

2
+ −H(t)−t+1

2
dt = −1

2
y2 + y. So now we can give a explicit value for (13) if

still adding just a few modifications here and there. The desired upper bound for v can

then be obtained out of it:

Theorem 21. v ≤ 13
9

.

Proof. First let Φ(x) = x+1
2

for the rest of (13) to obtain 1 − −H(0)−1
2

+ 2 · 2−2y

2
+ y

2
−

y

2
· H(0)+1

2
− y

2
· 2−2y

2
− 1

2
(−1

2
y2+y) = 10+2H(0)−(7+H(0))y+y2

4
. This term has to be maximized

in order to get an upper bound on v. For 0 ≤ y ≤ 1, it is obvious that H(0) = 1 does

the job without fail and so we get y2

4
− 2y + 3. The Searcher now mixes {±A, ±sΦ}

whereas he uses ±A with probability α and ±sΦ with probability 1 − α. Denote this

new mixed searcher strategy with σ = σ(α). As a Searcher using ±A meets a rational
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Hider either at time y or time 2 with equal probability, the expected capture time for

σ is α · (y

2
+ 1) + (1 −α) · (y2

4
−2y + 3) = α(−2 + 5

2
y − 1

4
y2) + 3 −2y + 1

4
y2. This term has

to be maximized in y such that it is an upper bound for v, while the choice of α is up

to the Searcher and can therefore be minimized for a sharper bound on v. Computing

this maximin problem via Matlab gives α = 7
9

and y is either 0 or 1. That means for

the Princess either to hide at an end or to escape from a sweeper until time 1 and then

run back to an end. Inserting the obtained values α and y in the last term gives the

desired upper bound 13
9

.

Some might consider to vary Φ to even get a better upper bound on v. But to

show that this bound can’t be much more improved with the use of the mixed searcher

strategy σ, let’s construct a mixed hider strategy γ such that the expected payoff

c(σ, γ) ≤ v(σ) for both strategies is only marginally smaller than 13
9

. As the analy-

sis of Theorem 21 indicates, it is maybe also here helpful for the Princess to choose

y = 0 and y = 1. So let be γ a mixed hider strategy that uses {±E, ±H0, H± 1
2
, H±1}

whereas Hx is defined as follows: The Princess using Hx starts in x, runs to the nearest

sweeper just to turn ε in front of him and runs back to the middle where she turns

once more to run back to the end. −Hx and H−x denote the symmetric counterparts

of Hx whereas it is not necessary to consider them for the computation of (13). More-

over it suffices to define a path for Hx that works until time y because the integral

(12) does not require anything beyond that. With x ≥ 0 and ignoring ε we have

Hx(t) =







H1
x = x + t, for 0 ≤ t ≤ 1−x

2

H2
x = 1 − t, for 1−x

2
≤ t ≤ y

and obtain therefore for (12) after substitu-

tion
´

1−x
2

0
Φ(H1

x(t) − t) + Φ(−H1
x(t) − t)dt +

´ y
1−x

2
Φ(H2

x(t) − t) + Φ(−H2
x(t) − t)dt =

1−x
2

· Φ(x) + 1
2

´ −x

−1
Φ(t)dt + 1

2

´ x

1−2y
Φ(t)dt. Putting that term together with (13) and

y = 1 yields

3

2
− Φ(−x) −

(1 + x)

4
· Φ(x) +

1

4

−x
ˆ

−1

Φ(t)dt +
1

4

x
ˆ

−1

Φ(t)dt (14)

Setting x either to 0, 1
2

or 1 and bounding the occurent integrals from below give a

matrix game with a value that is a lower bound for c(σ, γ) and thus also for the value of

the strategy σ. As Φ being a distribution function, it is monotonically increasing and the

integrals containing it, can for example be bounded from below by lower Riemann sums

over even partitions of length 1
2
. That means e.g.

´ 1

−1
Φ(t)dt ≥ 1

2
Φ(−1)
︸ ︷︷ ︸

+

=0

1
2
Φ(−1

2
) +

1
2
Φ(0) + 1

2
Φ(1

2
). So we get for ±H0, H± 1

2
and H±1 against ±sΦ the set containing their
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payoffs in same order:

{
3

2
+

1

4
Φ(−

1

2
) −

5

4
Φ(0),

3

2
−

7

8
Φ(−

1

2
) +

1

8
Φ(0) −

3

8
Φ(

1

2
), 1 +

1

8
Φ(−

1

2
) +

1

8
Φ(0) +

1

8
Φ(

1

2
)
}

(15)

In order to minimize the value of the matrix game the Searcher should choose Φ so that

the maximum of (15) is minimal. Solving this minimax problem with Matlab such that

0 ≤ Φ(−1
2
) ≤ Φ(0) ≤ Φ(1

2
) ≤ 1 and all values in (15) are positive, yields Φ(−1

2
) = 8

25

and Φ(0) = Φ(1
2
) = 9

25
. Then all payoffs in (15) are equal, that is the value 1.13. As the

strategies ±H0, H± 1
2

and H±1 all possess the same expected capture times against σ,

the game matrix can be simplified to

±E ±Hx

±A

±sΦ




1 3

2

3 1.13




. Its value is 337

237
= 1.4219

which is only marginally smaller than 13
9

.

3.3 A hider strategy with continuous initial distribution

Now it is time to improve the lower bound on v. Therefore we start with a definition

of a mixed strategy with continuous initial distribution, this time for the Princess. As

the strategies ±E, ±F and ±X did a good job in section 3.1.3, it suggests itself to

replace the similiar strategies ±F and ±G by a general version ±hΘ that works for

arbitrary starting points on the interval. In particular, let hΘ be similar to Hx beside

the fact that the Princess using hΘ waits for the nearest sweeper instead of straightly

running toward to him after she has picked a point x ∈ (0, 1) according to a continuous

distribution function Θ(x). Then she runs as with strategy Hx in front of the sweeper

that is ε behind her and after reaching the middle, she turns and runs back to the end.

In the symmetric strategy the Princess picks a point x ∈ (−1, 0) according to Θ(−x).

The Princess now mixes {±E, ±hΘ}. Denote this new mixed hider strategy with

µ. For the rest of this work redefine y ≤ 1 as the first time that a Searcher meets

a sweeper. Then by Proposition 9, any optimal response S of the Searcher against µ

has to let him start in [−1, 0) ∪ (0, 1]. If the Searcher starts at an end, then S should

be a sweeper strategy. So assume |S(0)| < 1. Due to the usual arguments concerning

symmetry of optimal strategies, assume moreover that S(y) = 1 − y. So the Searcher

with S meets the sweeper with A first and approaches therefore from the right. The

best thing he can do is to collect as many immobile hiders as possible that started in

x > S(0) and that either wait for the sweeper with A to come or that run ε in front

of the sweeper with A. So similiar to section 3.1.3 by computing payoffs it emerges

that turning until time y would only lower the value of the searcher strategy. At time

y there are three types of hiders remaining: A lonely Hider with strategy E is found
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in 1 and the hiders that started in x < S(0), build two groups. One that stays in the

positive half of the interval somewhen running into the Searcher and the other one in

the negative half of the interval. The last group together with the Hider using −E

can be caught by a Searcher with S at the earliest in −1. So the strategy S splits by

Proposition 9 at time y into two strategies. M1 denotes the strategy whose user goes

for the lonely Hider with E first and then catches the rest. M2 denotes the strategy

whose user similarly as in strategy sΦ “joins” the sweeper with A to catch all hiders

with x < S(0) and turns in −1 to get back to 1. Strictly speaking, such a Searcher

using M2 should not directly join the sweeper but run ε in front of him like the hiders

do. However, ε is ignored as always.

Both strategies have simple payoffs against ±E. A Monster with M1 catches a

Princess with E at time 2y after meeting the sweeper on half way and a Princess with

−E at time 2y + 2 after crossing the whole interval in addition. That makes a expected

payoff of 1 + 2y for ±M1 against ±E. The expected payoff for ±M2 against ±E is

known since dealing with ±sΦ, and is therefore 3. The remaining payoffs are obtained

in the following lemma, whereas θ = Θ′ denotes the probability density of Θ:

Lemma 22. Ignoring ε the expected payoff for ±M1 against ±hΘ is

(1 + y)(1 − Θ(2y − 1)) + 1
2

´ 2y−1

0
(−t + 2y − 1) · θ(t)dt + 1

2
(1 + y)Θ(1 − 2y)

+1
2

´ 1−y

1−2y
(t − 1 + 2y) · θ(t)dt + 1

2
y(1 − Θ(1 − y))

(16)

Ignoring ε the expected payoff for ±M2 against ±hΘ is

1 − Θ(2y − 1) + 1
2

´ 2y−1

0
(−t + 2y − 1) · θ(t)dt + 1

2
Θ(1 − 2y)

+1
2

´ 1−y

1−2y
(t − 1 + 2y) · θ(t)dt + 1

2
y(1 − Θ(1 − y))

(17)

Proof. To compute the payoffs, consider due to symmetry only M1 and M2 against

±hΘ. At first, we show (16). In exchange consider different cases. Thereof the first two

cases concern the strategy −hΦ whose user starts and stays in the negative half of the

interval. In the first case the Hider is to the left of a Searcher using M1 which means left

to 1 − 2y. As the Hider chooses his strategy with probability 1
2

and his starting point

x with probability Θ(−x), the total probability of using −hΘ with all x ∈ [−1, 1 − 2y)

is 1
2
(1 − Θ(2y − 1)). The Searcher with M1 finds such hiders not until the end of his

journey, that is at time 2 + 2y. This gives the first term. The second term is achieved

by considering hiders that start in x ∈ [1 − 2y, 0) with probability 1
2

´ 0

1−2y
θ(−t)dt =

1
2

´ 2y−1

0
θ(t)dt. Those hiders wait for the sweeper with strategy −A and therefore get

previously caught by a Searcher with M1 at time t(x) = x − (1 − 2y) ∀ y ∈ [ 1
2
, 1]. The
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last three cases deal with Hiders in the positive half of the interval. In the third case

the Hider is right to a Searcher with y < 1
2
, that gives the starting point x ∈ [0, 1 − 2y)

and the therefore corresponding starting probability 1
2
Θ(1 − 2y). The capture time is

computed as follows: The Searcher starting in 1 − 2y, runs to 1 and needs time 2y

for it while the Hider stays immobile. Then the Hider runs to the middle while the

Searcher is approaching about the distance of 1 − 2y. Finally both Hider and Searcher

meet on half way, that is the half of 2y. Consequently the capture time sums itself to

2y + 1 − 2y + 2y

2
= 1 + y. This gives the third term. The next case deals with hiders

that start in x ∈ [1 − 2y, 1 − y) with corresponding probability 1
2

´ 1−y

1−2y
θ(t)dt. Those

hiders wait for the sweeper using A similiar to the second case and get caught by the

Searcher at time t(x) = x − (1 − 2y) ∀ y ∈ [0, 1
2
]. This gives the fourth term. The last

case is about hiders that start right to the point where Searcher and sweeper meet.

They start there with probability 1
2
(1 − Θ(1 − y)). However, they get pushed into the

arms of the Searcher by the sweeper with A at time y. This gives the final term. The

second, the fourth and the fifth case are the same in (17). The only difference of M2

is that its user catches hiders that start to the right of him, faster. So in the first case

he catches respective hiders after joing the sweeper using A at time 2 instead of 2 + 2y

and in the third case he catches respective hiders after joining the sweeper using A at

time 1 instead of 1 + y.

Remark 23. Note that ±M1 and ±M2 do equal against ±hΘ apart from the double

occurence of the factor (1 + y) for y ≥ 0. So against ±hΘ, ±M2 dominates ±M1. The

only possible eligibility that ±M1 has and that it is actually designed for, arises from

its better payoff against ±E because of y ≤ 1.

As both terms (16) and (17) are only dependent on y, it is now possibile to form a

lower bound on v.

Theorem 24. v ≥ 15
11

.

Proof. To calculate concrete values for a matrix game, let the distribution be once more

the uniform distribution like in the last section. So let θ(x) =







1, for 0 ≤ x ≤ 1

0, else
and

Θ(x) =







x, for 0 ≤ x ≤ 1

0 for x < 0

1 for x > 1

. Inserting that into (16) and (17) give the expected payoffs

t1(y) =







−1
4
y2 + 1

2
y + 3

2
, for 0 ≤ y < 1

2

−5
4
y2 + 2, for 1

2
≤ y ≤ 1

and t2(y) =







3
4
y2 − y + 3

2
, for 0 ≤ y < 1

2

3
4
y2 − 2y + 2, for 1

2
≤ y ≤ 1

.

How they are put together can be found in Table 1. Since ±M2 dominates ±M1 against
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term 1 term 2 term 3 term 4 term 5

t1: 0 ≤ y < 1
2

: 1 + y 0 1
2

(1 + y)(1 − 2y)
1
2

´ 1−y

1−2y
(t − 1 + 2y)dt

= 1
4

y2
1
2

y2

1
2

≤ y ≤ 1: (1 + y)(2 − 2y)
1
2

´ 2y−1
0 (−t + 2y − 1)dt

= y2 − y + 1
4

0
1
2

´ 1−y
0 (t − 1 + 2y)dt

= − 3
4

y2 + y − 1
4

1
2

y2

t2: 0 ≤ y < 1
2

: 1 0 1
2

(1 − 2y)
1
2

´ 1−y
1−2y

(t − 1 + 2y)dt

= 1
4

y2
1
2

y2

1
2

≤ y ≤ 1: 2 − 2y
1
2

´ 2y−1
0 (−t + 2y − 1)dt

= y2 − y + 1
4

0
1
2

´ 1−y
0 (t − 1 + 2y)dt

= − 3
4

y2 + y − 1
4

1
2

y2

Table 1: The individual payoffs for t1 and t2 whereas each term belongs to the corre-
sponding term of (16), respectively (17). Adding those terms yields t1 and t2.

±hΘ, we pretend that ±M2 dominates ±M1 against µ as well, as if the better payoff

of ±M1 against ±E does not justify the use of ±M1 at all. So the Monster chooses

strategies only in {±A, ±M2}. Because the payoff of ±M2 against ±E is independent

of y, it is sufficient that the Monster picks a y with 0 ≤ y ≤ 1 such that t2(y) is

minimal. This happens for y = 1 and the value t2(1) = 3
4

is put into the game

matrix

±E ±hΘ

±A

±M2




1 3

2

3 3
4




. Solving the matrix game with Matlab yields the value 15

11

whereas the Princess uses the strategy ±E with probability 3
11

and all strategies in

±hΘ together with probability 8
11

. To show that 15
11

is a lower bound on v, it remains

to show that the Searcher can’t improve by including the strategy ±M1. And this is

true, because if the Hider keeps using his strategy with the above specified probabilities,

then 3
11

· (1 + 2y) + 8
11

t1(y) is minimal for y = 0 and y = 1 exactly with value 15
11

. So
3
11

· (1 + 2y) + 8
11

· t1(y) ≥ 15
11

∀ y ∈ [0, 1] yields.

To make further statements about the lower bound of v, consider this time another

approach which is dealt with in detail in the next section.

4 Numerical approach of the interval game

Let’s restrict the ’Princess and Monster’ game on an interval and only permit the

strategies used in the last section. The value of this restricted game is denoted by vr

and has already been estimated for the case that the Princess chooses every starting

point in (−1, 1) with same probability. In contrast to section 3.2 where only the strategy

of the Monster could have been specified directly to give a bound on v, the strategies

of both players as well as their corresponding payoffs of section 3.3 are known. This

enables us to re-pick up and realize the thoughts in the proof of Proposition 8: A

discretization of the interval game might sharpen the lower bound on v, since the
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value of a discretized game would converge to vr ≤ v for an increasing number of grid

points due to the same reasons given in the proof of Proposition 8. In particular, the

discretization of this section looks like this: The interval splits into 2n equidistant grid

points with n ∈ N whereas the first and the last grid point represent the end points

±1 and the middle of the interval, respectively 0 gets only approximated by the two

surrounding grid points. The corresponding mesh size of this discretization is therefore

4 = 2
2n−1

. Now the Monster and the Princess behave as before, but they have to

choose a grid point as starting point and they can move in a time step equal to 4

from one grid point to another. Capture occurs when both players occupy the same

grid point at the same time. Hence, if the players start at the same grid point for

example, the game is immediately over. In order to solve this approximation of the

restricted game, we can compute a capture time due to the finite number of grid points

for every strategy and every starting point of the player and put it then into a game

matrix G = (gi,j)i=1,...,8n,j=1,...,2n. Denote the value of this matrix game with vn and let

k, l ∈ [2n] denote the grid points where the Monster, respectively the Princess starts in

at which k = 1 or l = 1 relates to the end point −1, k = 2 or l = 2 relates to −1 + 4,

etc. Then the game matrix yields

j=1 j=l≤n j=l>n j=2n

↓ · · · ↓ · · · ↓ · · · ↓

−E −hΘ hΘ E

i=1 → −A

.

.

.

i=k → M1

.

.

.

i=2n → A

i=1+2n → −A

.

.

.

i=k+2n → −M1

.

.

.

i=4n → A

i=1+4n → −A

.

.

.

i=k+4n → M2

.

.

.

i=6n → A

i=1+6n → −A

.

.

.

i=k+6n → −M2

.

.

.

i=8n → A















































0 · · · 1 · · · 2 · · · 2

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

4 − (k − 1)4 · · · =

{

4 − (k − 1)4, l < k

(l − k)4, else
· · · =

{
(n − 1 + d

2n−k
2

e)4, l < k

(2n − l + d 2l−2n−k
2

e)4, l > n + k
2

(l − k)4, else

· · · 2 − (k − 1)4

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

2 · · · 2 · · · 1 · · · 0

0 · · · 1 · · · 2 · · · 2

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

(k − 1)4 · · · g2n+1−k,2n+1−l · · · g2n+1−k,2n+1−l · · · 2 + (k − 1)4

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

2 · · · 2 · · · 1 · · · 0

0 · · · 1 · · · 2 · · · 2

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

2 · · · =

{

2, l < k

(l − k)4, else
· · · =

{
(n − 1)4, l < k

(2n − l + d
2l−2n−k

2
e)4, l > n + k

2

(l − k)4, else

· · · 4

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

2 · · · 2 · · · 1 · · · 0

0 · · · 1 · · · 2 · · · 2

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

4 · · · g6n+1−k,2n+1−l · · · g6n+1−k,2n+1−l · · · 2

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

2 · · · 2 · · · 1 · · · 0















































(18)
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Remark 25. The computation of the capture times of ±hΘ against M1 and M2 and

their associated distinction of cases in (18) relates to the computations and distinction

of cases in the proof of Lemma 22. Then those payoffs also offer the capture times

of ±hΘ against −M1 and −M2 which can be computed because of symmetry by a

clever shifting of indices. The only difference is that due to the rules of this discretized

game the starting of both players and the capture takes place on grid points which

has thereby to be considered when computing capture times of this discretized game

in general. This leads for example to terms with ceiling functions to ensure that if the

Monster and the Princess locate on adjacent grid points at the same time and then run

toward to each other, they don’t meet in the mid of those grid points. Since this sort of

modeling means a disadvantage for a Monster starting in a grid point with odd index

k, a resultant ’zig-zag-distribution’ of starting points can be avoided by omitting these

ceiling functions.

Solving this matrix game yields slight different values and different optimal distri-

butions of strategies of both players than in [2]. The values of the matrix game can be

found in Table 2 while the Princess and the Monster use their strategies in this follow-

ing manner: Both utilize two types of discrete strategies at a time and one continuous

strategy at a time. For the Princess this means that she either hides at each end point

with probability ≈ 0.127, she uses ±hΘ with starting point ±ε with total probability

≈ 0.236, or she uses ±hΘ when starting in the rest of the interval according to a initial

continuous distribution described by the density function in Fig. 3 on the left side. In

contrast the Monster either uses the sweeper strategy with total probability ≈ 0.814,

strategy ±M1 when starting near the end in ±(1 − ε) with probability ≈ 0.059 at each

point, or strategy ±M2 when starting in the rest of the interval according to a initial

continuous distribution described by the density function in Fig. 3 on the right side.

Note that the Monster uses M2 only when starting in the negative half of the interval

and −M2 only when starting in the positive half of the interval. In fact it additionally

attracts attention that for a not large enough n the Princess as well as the Monster

very rarely use further discrete strategies near the end points and near the middle as

a consequence to numerical side-effects, but they disappear with an increasing number

of grid points.

29



n vn

1 1
2 1.2667
4 1.3303
8 1.3547
16 1.3647
32 1.3689
64 1.3709
128 1.3719
256 1.3724
512 1.3726
1024 1.3727

Table 2: The values of the matrix game which approximates the restricted game with
vr dependent on n

Figure 3: Left: Probability density of the continuous Princess strategy; Right: Proba-
bility density of the continuous Monster strategy
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5 Conclusion

Summing up it can be said that the solution of this game is still unknown, but at

least there exist good estimates of v as well as some helpful evidence about properties

of optimal strategies. The latter can be used to test strategies on optimality as it

has already been demonstrated in this work. Due to the mixed strategies of both

players being very complex – and this can be seen once again in the evaluation of the

restricted game of the last section – it is conjectured that this game won’t ever get

solved analytically after all. But since the mixture of the strategies {±E, ±hΘ} might

seemingly be optimal for the Princess, the value vr could be the value of the game.

Unfortunately the (ε−)optimality of µ could not have been established yet. Otherwise

the results of section 4 would then at least approximatively solve the game. Here the

Monster uses as expected his sweeper strategy the most which forces the Princess to

use ±E not too often. Moreover the strategy ±M1 gets almost completely dominated

by ±M2 as indicated in section 3.3: Going for one lonely Hider at the nearest end isn’t

profitable for the Monster. It only uses ±M1 when starting in ±(1 − ε) because there

is no Princess with inner strategy ±hΘ left to catch at time y and therefore its better

payoff against the end point strategies ±E let ±M1 become preferred in this special

case. The relative high probability that goes along with this discrete strategy is a result

of the fact that the Monster starts near one end here and – as said above – is able to

catch therefore all hiders using ±hΘ until meeting the sweeper. Such hiders with ±hΘ

do best in average against this if starting in the middle and this maybe explains the

relative common appearence of the Princess in the mid, although the density in Fig.

3 otherwise suggests a minimum there. However note that the Monster doesn’t often

start in the rest of the interval, but if still doing so, it prefers y ≥ 1
2

such that it collects

enough immobile hiders using strategy ±hΘ. Thereby the Monster apparently starts

the most time in ±1
2

such that y = 3
4
. The reasons of that maximum are not obvious,

but choosing y = 3
4

maybe presents an equilibrium of two aims of the Monster, that is

catching a lot of hiders with one move and catching all hiders as fast as possible. Hence

it is also not bad for the Princess to start behind the Monster and this becomes the

more likely the more she is near an end. This explains the density in Fig. 3. All in all,

the results of section 4 seem reasonable. And even if µ was not quite optimal, I have

gained the intuition that it would not be far away from that.

31



References

[1] S. Alpern, R. Fokkink, R. Lindelauf, G.J. Olsder (2006). The ‘Princess and Monster’

Game on an Interval, SIAM J. of Control Optim.

[2] S. Alpern, R. Fokkink, R. Lindelauf, G.J. Olsder (2006). A Numerical Approach to

the ‘Princess and Monster’ Game on an Interval.

[3] R. Isaacs (1965). Differential Games. Wiley, New York.

[4] S. Gal (1980). Search Games. Academic Press, New York.

[5] K. Binmore (2007). Game Theory: A Very Short Introduction. Oxford University

Press, New York.

[6] S. Alpern and S. Gal (1998). A mixed strategy minimax theorem without compact-

ness. S.I.A.M. J. Control Optim. 33, no. 2 311-323.

[7] R. J. Vanderbei: Linear Programming, Foundations and Extensions, Springer, 2008.

32


